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Abstract 
 
A simple Add-On adaptive control algorithm is presented 
that can improve the performance of any linear time-
invariant plant controlled by PID controller. The 
algorithm is simple. It is proved that such algorithm 
always exists. The proof is constructive, that is, it is 
simple and straight forward to design and implement the 
control algorithm. The algorithm is presented as a set of 
equations and in a block diagram that demonstrate the 
simplicity of the algorithm. It is demonstrated that this 
approach completely solves the portability problem.  The 
paper is oriented towards the practitioner and therefore 
any proof that already appears in the literature is only 
cited. An example demonstrates the improvement in 
performance. 
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1.  Introduction 
 
Control engineer often tackle the following problem: 
There is an existing system (e.g. target tracking problem, 
LOS stabilization, servo system, etc.) that is performing 
well and meets some specifications, i.e. stable, robust and 
with satisfying response. The engineer is required to 
devise for the same type of application a system with 
improved performance, e.g. smaller tracking errors, faster 
response, improved robustness, etc., under changing and 
uncertain environment. 
There are several approaches to this challenge: 
i) Redesign the whole system; 
ii) Replace or add sensors; 
iii) Adopt new motion and control technology; 
iv) Apply algorithms with existing hardware; and more. 
In this paper we adopt solution No. (iv), i.e. the following 
solution is proposed: An Add-On adaptive control 
algorithm that will supplement the existing control 
algorithms and thus improve the performance and 
hopefully meet the updated requirements. 
This is a Cost-Effective approach as it does not require 
design and manufacture of new hardware. 
This approach guarantees improvement in performance, 
improvement in robustness of performance under 
changing operating regime. 
In previous paper [1] it has been shown that such 
algorithm always exists for stable systems. In this paper 

this result is generalized and it is shown and proved that 
such algorithm always exists for any system controlled by 
PID controller. 
We are not replacing the existing PID control algorithm; 
therefore we assume that the existing system is stable 
with sufficient gain and phase margins.  
The novelty of this paper is the proof that shows that there 
always exists an algorithm that improves the performance 
and robustness of the system. The presented algorithm 
completely solves the portability problem.  
The Add-On adaptive control algorithm is based on the 
Simple Adaptive Control algorithm (SAC) [2,3]. 
 
2.  Statement of the Problem 
 
We assume that the existing system, Figure 1, is a two 
degrees of freedom (performance and robustness) and two 
Building block controller (trajectory generator and the 
closed loop PID controller. For the definitions of the 
nomenclature see [4]. The trajectory generator produces 
the trajectory that the closed loop system is required to 
track with the smallest tracking error possible, ideally 
zero. This system is stable, robust (gain and phase 
margins) and satisfies some performance requirements 
(time response, overshoot, steady state and maximal 
tracking error, etc.). 

 
Figure 1: Existing System control architecture: a Two 

Building Block Controller architecture: One block- PID 
controller- koH(s), Second Block – Trajectory generator. 
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The problem is to design a system with improved 
performance.  
 
3. The proposed solution of the problem –
Add-On adaptive controller 
 
In order to proceed and present the proposed Add-On 
Adaptive Controller we consider the following three 
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block realizations of the system depicted in Figure 1. 
We prefer to operate on the existing closed loop for 
several reasons: 
1. The original system is not changed (this is good for 

maintenance, the existing personnel is familiar with 
the equipment,…); 

2. The uncertainty of the closed loop is reduced by the 
existing controller, therefore the added controller have 
to deal with less uncertainty; 

3. The added controller can always be disconnected and 
the original performance restored; and more. 

 
We partition the controller koH(s) as presented in figure 2. 
It is assumed that H1(s) is the PID controller.  

 
Figure 2: Three block realization of the Existing System 

control architecture. 
We have 
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If k1>>1 the two realizations, on Figure 1, eq. (1) and 
figure 2, eq. (2), respectively, are equivalent. 
We assume that k2 is such that inner loop  
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is stable and gives acceptable performance. 
Then the proposed Add-On Adaptive algorithm control 
architecture is as presented in Figure 3. 

 
Figure 3: Proposed Add-On Adaptive algorithm control 

architecture. 
 
4. The Add-On Control Algorithm for SISO 
plants 
  
We treat here only SISO systems the sake of simplicity. 
The algorithm for SIMO, MISO, MIMO systems are 
described in the literature and are simple augmentation of 
the algorithm for SISO algorithm [2,3]. The necessary 
conditions for the performance of the algorithm are 
presented in following sections. 
Let us assume that the system G(s) in closed loop with 
k2H2 is strictly proper system of any order and 
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The PID controller H1(s) is 
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The plant )(sG p (3) whose order may be very large and 
unknown, with the PID controller (5) in cascade, That is 

)(sP (4), is required to follow the input-output behavior 
of the (arbitrary) model reference that in the motion 
control literature is called also Trajectory Generator(TG)  
represented by 
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mmm BAsICsM 1)()( −−= . 
where x m ∈Rm, y m ∈R, u m ∈R. 
It is worth mentioning that in this approach the so-called 
model is only a trajectory generator. This trajectory 
generator is only used in order to define, or “model,” the 
desired input-output behavior of the plant, but it is free 
otherwise and is not a result of some reduced-order 
modeling of the plant (and, in particular, m<<n  is 
permitted). 
The tracking error is 

)()()( tytyte m −=  (7) 
For the realization of the Add-On algorithm a building 
Block, the Parallel Feedforward Configuration (PFC) 
denoted )(sD  is required. The rational behind this 
building block is presented shortly in the following 
sections and in depth in the references [3]. 
Realization of the PFC is 
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The selection of )(sD  is as follows: Select some transfer 

function )(1 sQ −  : 
i) that is minimum phase(all zeros are in the LHP); 
ii) has relative degree one(one more poles than zeros)  
iii) has no poles on the imaginary axis; 
iv) if )(1 sQ − is also stable then )(sD is stable as well; 
then  

)()()( 1 sGsQsD p−= −  (9)  
The augmented error, with slight abuse of notation, is 
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The following is the suggested SISO Add-On controller, 
which in our approach is a simple model reference 
adaptive controller (SAC).  

)()()()()()]([)( 1 tutKtxtKyetKktu mumxae +++=  (11) 
The adaptive gains are obtained as a combination of 
"proportional" and "integral" gains 
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and where all Γ's' and σ are positive definite matrices of 
proper dimension or positive scalar, respectively. Figure 4 
presents a detailed block diagram of the proposed Add-On 
adaptive control algorithm. 
 

 
Figure 4: A detailed Block diagram of the proposed Add-
On Adaptive controller for stable plant cascaded with PID 

controller. 
 
5. Background and the Theory of the Add-on 
Controller – The SAC Algorithm 
 
This section presents the background behind the rational 
of the Add-On SAC controller.  
 
5.1 Definitions 
 
We deal with transfer functions that are not necessarily 
proper rational functions. For the sake and convenience of 
the mathematical generality, we define as follows:  
1. A rational (not necessarily proper) function is stable if 

all its poles are in the open LHP.  
2. A rational function is minimum phase if all its zeros 

are in the open LHP (otherwise it is non-minimum 
phase). 

3. Relative degree, r:  r = degree of the denominator – 
degree of the numerator. 

4. S~    Family of all stable, not necessarily proper, real-
rational functions.  

5. S    Family of all stable, proper, real-rational 
functions. 

6. rr SS ~,~  above families, restricted to relative degree r. 
For stating the stability and performance of the Add-On 
Adaptive Control two concepts are required:  
a. Strictly Positive Real system (SPR); 
b. Almost Strictly Positive system (ASPR). 
Because the meaning of these concepts in real world 

systems is not very clear, a co-paper presented at this 
conference presents a clear picture of their definition and 
understanding. 
In this work we assume that the plant )(sG p  
(i) Is a stable system; 
(ii) is strictly proper, i.e. the relative degree = r ≥ 1. 
 
5.2 Stability and performance 
 
Rigorous proofs of stability and performance of the Add-
On adaptive control algorithm presented in section 4 are 
presented in [2,3]. Here we only state the sufficient 
condition. The Add-On adaptive control algorithm is 
stable and the tracking error ea asymptotically converges 
if the Parallel Feedforward Configuration (PFC), )(sD , is 
such that the augmented plant 

( ))()()()()()( 11 sDsGsHsPsHsP pa +==  (15)  
is Almost Strictly Positive system(ASPR). (As we show 
below, it implies that if )(1 sD − stabilizes )(sG p , then 

)(sPa  above is minimum phase. Then, if the relative 
degree of )(sPa  is 1, the required ASPR conditions are 
satisfied.) 
 
6. Parameterization of PFC that Renders 
Plants with PID controller ASPR 
   
Here we deal with the following issue: When can a plant 
be converted into an ASPR plant? We only deal here with 
stable systems cascaded with PID controller. The main 
result that is formalized in this section is that any stable 
system cascaded with PID controller can be augmented in 
such a way as to make it ASPR. 
We will parameterize a set of parallel feed-forward 
configurations (PFC) that convert any stable system 
cascaded with PID controller into an ASPR plant.  
 
Here, we use ideas from [2,5]: 
Theorem 1: Consider the system SG p ∈  (stable and 
proper). The set of all controllers, C , for which the 
feedback system is internally stable equals 
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Proof: The following is a short sketch (see[5] for details): 
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Notice: 
i) C is not necessarily stable or minimum phase! 
ii) in [5] one can find more general parameterizations of 
the set of all stabilizing controller for any proper plant. 
 
Theorem 2: [2]  
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ASPR⇔minimum phase + relative degree∈{0,1}. 
 
Theorem 3: Consider the system S)( ∈sG p (stable+ 

proper). Let U 0-1 SSQ ~~
∈ (i.e. stable+relative_degree∈{0,-

1}).  
If 

pQG
QD

-1
1 =−  then )()( sDsG p +  is minimum_phase 

and relative_degree∈{0,1} and thus ASPR. 
Proof: [6] We have (a short sketch) 
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Theorem 3a: Assume that the system S∈pG  (stable+ 

proper). Let -1Q  be minimum phase + relative_ 

degree ∈{0,1}). If )()()( 1 sGsQsD p−= −  then 

)()( sDsG p +  is minimum phase + relative degree 

∈ {0,1} and thus ASPR. 
Proof: see [6]. 
 
Lemma 1: The PID controller H1(s) in (4) is minimum 
phase and relative degree=0, therefore is ASPR. 
Proof: [7]. 
  
As stated in section 5.2 we need (14) to be ASPR. This is 
formulated in the following. 
Theorem 4: The augmented plant  

( ))()()()( 1 sDsGsHsP pa +=  is ASPR. 
Proof: [7].  
 
Remarks: 
(i) Theorems 4 states that for any stable system 

cascaded with PID controller there always exists 
ASPRing PFC, denoted )(sD .  

(ii) The converse of Theorem 4 is not correct. That is, 
Theorems 4 does not parameterize all  PFC's that are 
ASPRing stable system cascaded with PID 
controller. 

(iii) If in addition Q the theorems 3 and 3a is minimum 
phase then )()( sDsG p +  is stable as well. 

(iv) We restricted Theorems 3 and 3a to stable systems 
and Theorem 4 for stable plant cascaded with PID 
controller only because of its simplicity and its 
direct applicability to many real world problems. 
However, in general, ASPR plants that are created 
by parallel feedforward configuration (PFC) do not 
require the original plant to be stable are not 
required to be minimum phase.  

 
7. Parallel Feedforward Configuration (PFC) 
in Practice 
 
In this section we show a practical how-to implementation 
of Parallel-Feedforward Configuration (PFC). From the 

derivation in the preceding section, one may question the 
applicability of PFC. One may even ask: How do you add 
something to the plant output?  Do you bend the motor 
axis?  
The following shows that the concept of PFC is 
implementable as in Figure 4, i.e. in the Add-On adaptive 
control algorithm itself. 
First, Figure 5 shows the Add-On control algorithm for  
the case that the plant in cascade with the PID controller 

)()(1 sPsH  is ASPR. 
 

 
 

Figure 5: The Add-On SAC algorithm for an ASPR plant. 
 

When )(sG p  is stable but )()(1 sGsH p  is not ASPR, we 
showed in theorem 4 that when )(sD  is selected 
according to Theorem 3 or 3a, then, the augmented 
plant )(sPa is ASPR.   
Figure 6 shows the Add-On adaptive control algorithm for 
this case.  
 

 
Figure 6: The SAC algorithm for stable plant cascaded 

with PID controller. 
 
We now apply the following operations 

( )[ ]
)()(
)(

)()(

1

1

1

yykuKxKDuyyK
yykuKxKDuyyK

yykuKxKyyKu

mmumxsme

mmumxsme

mmumxsme

−+++−−=

−++++−=
−+++−=

 (17) 

The first row is direct implementation of PFC on the 
ASPRed plant. The last row is a different mechanization 
of the Add-On SAC algorithm where the PFC is 
implemented within the algorithm as depicted in Figure 4. 
We note that PFC allows taking plants of any relative 
degree and even non-minimum phase, and make them 
into ASPR plants. However, as instead of )(sP  one now 
controls )(sPa , even when one can obtain ideal 
performance for ( )DGH p1 + , the added )(sD is necessary 
ballast, needed to guarantee stability with adaptive 
controllers. We note that if )(sD is small, its effect on the 
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performance is also small. 
8. Example 
 
A great amount of examples are presented in the 
literature. In this example we assume 
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8.1 Existing Performance 
 
The existing performance is to track a trajectory that is 
shaped by a TG with time constant of 1 sec that is fed by 
a square wave with frequency of 0.2 Hz. The 
performance, that has been satisfactory for the present 
system, is presented in Figure 7. 

 
8.2 Present Performance with Updated Requirement 
 
The new requirement is to track a trajectory that is shaped 
by a TG with time constant of 0.1sec that is fed by a 
square wave with frequency of 0.4 Hz. The application of 
this new input to the existing system gives unacceptable 
performance, as presented in figure 8. 
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Figure 7: Model output, plant output, and tracking error –

M(s)=1/(s+1). 
 

8.3 Performance with Add-On Adaptive Controller 
 
To apply the proposed Add-On Adaptive Controller we 
select a minimum phase )(sQ  with relative-degree=-1  
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Then from theorem 3a 

)5.0(100
1)()()( 1

+
=−= −

s
sPsQsD  (20)  

We need to implement only )(sD in (8). Further analysis 
presented in the co-paper [7] shows that the ASPR 
conditions are satisfied. The system is required to track 
the output of a purposely selected reduced order model 
(TG) of order 1, M(s)= 1/(0.1s+1), as shown in Figure 9 
(in black).  The new requirement is to track a square wave 
of 0.4Hz. Figure 9 shows as well the output of the plant 

(in blue) and the tracking error with the proposed Add-On 
Adaptive Controller. 
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Figure 8: Model output, plant output and tracking error 
for high performance requirement - M(s)=1/(0.1s+1). 
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Figure 9: Model output, plant output and the tracking 

error with the Add-On adaptive controller. 
 
Figure 10 shows the Add-On adaptive controller gains. 
We must also note, however, that the adaptive gain 

)(tK Ie in (14) would increase whenever the tracking error 
is not zero. Although it is proved [2,3] that all adaptive 
gains converge to constant finite values under ideal 
conditions, the gain )(tK Ie  without the sigma-term in (14) 
would continually increase in the presence of any noise, 
even at those noise levels that are negligible for any other  
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Figure 10: The gains of the Add-On Adaptive Control 

Algorithm. 



practical purposes. Although an ASPR system remains 
stable with arbitrarily high gains, these gains may be too 
high for any practical (and numerical) purpose and may 
even diverge in time. This is the reason for the adoption 
of Ioannou’s simple idea [8,9] and addition a sigma-term 
in(14) (or forgetting factor).This effect is not felt by the 
control gains )(tK Ix  and )(tK Iu  that move up-and-down 
according to the specific situation. With the sigma-term 
the error gain increases whenever it is required to increase 
(because of large errors, etc.) and decreases when large 
gains are not needed any more. The coefficient σ can be 
very small, because its aim is only to prevent the gain 
from increasing without bound. Figure 11 presents a 
block diagram of the example's existing plant and Add-On 
adaptive control algorithm that has been used to derive 
the results in this paper. This demonstrates the simplicity 
of the presented Add-On Adaptive Control Algorithm. 
 
9.  Conclusions 
 
An Add-On adaptive control algorithm that can always 
improve the performance of any system controlled by PID 
controller has been presented. The proofs are 
constructive, thus presenting simple cost-effective 
alternative to requirement of improving system 
performance. 
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Figure 11: Block diagram of Simulink program of the example's existing plant and Add-On adaptive control algorithm. 


