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Abstract: The theory, proofs, use and implementation of robust adaptive control algorithms require the 
understanding of the concepts of Strictly Positive Real (SPR) and Almost Strictly Positive Real (ASPR) 
plants. Although these concepts are defined in the existing literature, both in time and frequency domains, 
their grasp is not straight forward for the practicing control engineer that deals with real-world plants. 
Here, we attempt to present the interpretation and meaning of these concepts in a more intuitive way for 
the practicing control engineer. That is, we use the Bode, Nyquist, Nichols and Root-Locus domains that 
may help the control engineer better grasp their implications. The paper is oriented towards the practitioner 
and therefore any proof that already appears in the literature is only cited. An important result that is 
formalized and proved is that any stable system can be made ASPR. An example is also given in order to 
demonstrate these concepts. 

 

1. INTRODUCTION 

When tackling challenging control problems, one often 
considers the application of adaptive control. This may be a 
Cost-Effective approach if it does not require design of new 
hardware. 
Application of adaptive control in general and the Simplified 
Adaptive Control (SAC) [1, 2] in particular require the 
control system to be Almost Strictly Positive Real (ASPR).  
Recent work [7] shows how the performance of any stable 
existing servo system can be improved by applying an Add-
On SAC based controller. To emphasize it is shown in [7] 
that for a stable system there always exists a controller that 
improves the system's performance. This approach 
guarantees improvement in performance and improvement in 
robustness of performance under changing operating regime. 
However, the implementation, understanding and proofs of 
performance of the Add-On adaptive controller require the 
understanding of the concepts of SPR and ASPR. Therefore, 
this paper reviews the SPR and ASPR and presents their 
interpretation in the Bode, Nyquist, Nichols and Root-Locus 
domains. This helps the control engineer better grasp their 
implications. 
It is shown (and proved) that for any proper stable system 
there always exist an algorithm – the so-called Parallel 
Feedforward Configuration (PFC) - that makes the plant 
ASPR, thus showing that the performance of any proper 
stable system can be improved by the Add-On SAC based 
algorithm. The proof is constructive and it is very simple to 
derive the required PFC. 
 
 

2. SPR UNTANGLED 
 

In this section, we first present the rigorous definition of SPR 
system in time and frequency domain. Then, intuitive 
interpretations present, for the engineers, the SPR concept in 

each of the engineering descriptions: Bode, Nyquist, Nichols 
and Root-Locus domains. 
Let the SISO linear system be strictly proper system and 
represented by 
 

 (1) 

 
2.1. Definition of SPR in time domain [2,4] 
 
Definition 1: The SISO strictly proper minimal realization 
(12)-is called "strictly positive real" (SPR) if the following 
time-domain relations are satisfied: 
 

 (2) 

 
2.2. Definition of SPR in frequency domain [2] 
 
Definition 2: The transfer function Z(s) is SPR if and only if 
1. Z(s) is stable (does not have poles in the closed RHP); 
2. Re{Z(jω)}>0 for all |ω|<∞; 
3. Z(s) is real for real s (any physical system satisfies this 

condition); 
4. . 

Notice: For any practical purpose conditions 1 and 2 are the 
major conditions from engineering point of view.  Conditions 
3 and 4 are presented here for the rigorous definition. 
 
Fact 1: G(s) is SPR ⇔ G-1(s) SPR. 
Fact 2: SPR ⇒stable + minimum phase + relative degree = r 
∈{-1, 0, 1}. 



 
 

     

 

Fact 3: The converse of fact 2 is not correct, i.e. stable + 
minimum phase + relative degree = r ∈{-1, 0, 1} are 
necessary but not sufficient requirements. 
 
2.3 Engineering understanding: 
 
If the system Z(s) is SPR, this implies that the system 
remains stable for any positive static gain, even arbitrarily 
large, i.e. Z(s)/(1+kZ(s)) is stable for any k≥0. This means 
that such system can achieve any closed loop bandwidth. 
However, real SPR systems are rare, to say the least. 
The SPR requirement means that the transfer function is such 
that the phase of the transfer function is 

, and also, simultaneously that 
the slope of the Bode plot is 

.  
The full interpretation of SPR in Bode, Nyquist and Nichols 
domains is complicated and can not be put clearly in a single 
figure. The following are strictly sufficient conditions for 
SPRness in those domains. We sacrifice some 
comprehensiveness for simplicity.  
 
2.4 SPR in Bode Domain 
 
Figure 1 presents interpretation of SPR in Bode Domain. SPR 
means that the Bode plot can not roll down faster that at rate 
of -20dB/dec. 
 

 
Figure 1: Interpretation of SPR condition in Bode domain. 

 
2.5 SPR in Nyquist Domain 
 
Figure 2 presents the interpretation of SPR in Nyquist 
Domain. The requirement on the phase means that the graph 
of the transfer function should lie in the open LHP of the 
Nyquist domain-the complex plane. 
 
2.6 SPR in Nichols Domain 
 
Figure 3 presents the interpretation of SPR in Nichols 
domain. The requirement on the phase means that the graph 
of the transfer function phase should lie between   -90deg and 
+90deg. 
 

 
Figure 2: Interpretation of SPR condition in Nyquist domain. 
 

 
Figure 3: Interpretation of SPR condition in Nichols domain. 
 
 
2.7 SPR in Root-Locus 
 
To check that a given transfer function is SPR in Root-Locus 
domain, i.e. from pole-zero location in the complex plane, is 
complicated.  At an engineering level the best that can be said 
today is: 
The poles and zeros should be sufficiently distant to the left 
of the imaginary axis and pole–zero pairs should be 
sufficiently close one to another. An example of SPR plant 
pole-zero location is shown in Figure 4. 

 
Figure 4: Interpretation of SPR condition in Root-Locus 

domain. 
3. ASPR UNTANGLED FOR STABLE SYSTEMS 

 
Because, as we mentioned, SPR is a very strong property, not 
necessarily satisfied in real-world, [2] has introduced the 
concept of “Almost” SPR (ASPR). 
In this section we first present the rigorous definition of the 
ASPR system in time and frequency domains for general 



 
 

     

 

system. Then, we also present for stable systems an intuitive 
interpretation of the ASPR concept for the engineers in each 
of the engineering descriptions: Bode, Nyquist, Nichols and 
Root-Locus domains. 
 
3.1. Definition of ASPR in time domain [1,2] 

 
Definition 3:  Let the be strictly proper SISO linear system 
be represented by 

 (3) 

Then if there exists a gain such that the closed loop 
system 

  (4) 

is SPR,  the original open loop system (1) is called ASPR. 
 
 
3.2. Definition of ASPR in frequency domain [1,2] 
 
Definition 4: Let  be a transfer function. If there exist a 
constant gain, Ke, not necessarily known, such that the closed 
loop transfer function 

 (5) 

is SPR, then  as called Almost Strictly Positive Real 
(ASPR).  
 
Lemma 1 [1]: Let Z(s) be a SISO minimum phase transfer 
function of relative degree 1 (n poles and n-1 zeros). Then, 
Z(s) is ASPR. 
In other words, the system is ASPR if, for some , 

the closed loop system  is SPR. 
The above means, and interpreted in the Bode, Nyquist, 
Nichols and Root-Locus domains, that ASPR systems are 
stabilizable by some positive gain (and remain stable even for 
very large gains). 
 
The full interpretation of ASPR in Bode, Nyquist and Nichols 
domains is complicated and can not be put clearly in a single 
figure. The following are strictly sufficient conditions for 
ASPRness in those domains for stable systems. We sacrifice 
some comprehensiveness for simplicity.  
At an engineering level, for stable systems (that are dealt with 
here and in the co-paper [7]), we have: 
The ASPR requirement means that the transfer function is 
such that the phase of the transfer function is at low 
frequencies should not be too high, and at high 
frequencies . This means, 
simultaneously, also that the slope of the Bode plot is at low 
frequencies can not be high and at high frequencies we 
require .  
 
3.3 ASPR in Bode Domain 
 

Figure 5 presents the interpretation ofASPR in Bode Domain. 
For proper systems this means that the Bode plot can not: (i) 
at low frequencies, roll down (up) faster that -
40dB/dec(40dB/dec); and (ii) at high frequencies, roll down 
(up) faster that at rate of -20dB/dec (20dB/dec).(Recall that 
the Bode Integral connects the absolute value and the phase 
of the Bode plot.)  
 

 
Figure 5: Interpretation of ASPR condition in Bode domain. 

 
 

3.4 ASPR in Nyquist Domain 
 
Figure 6 presents the interpretation of ASPR in Nyquist 
Domain. It means that the Nyquist plot exclude the circle of 
radius 1/2k, k>0, with origin at [-1/2k,0], i.e. arrive at the 
origin with phase of 90deg, and should not encircle the at [-
1/k,0] point. 

 
Figure 6: Interpretation of ASPR condition in Nyquist 

domain. 
 
For constant gain it would be encircle the at [-1/k,0] point for 
stability in closed loop for any constant gain, k. However 
since in adaptive control the gains are time varying the 
additional condition (exclusion of the circle and arrival at -90 
deg) arises. 
3.5 ASPR in Nichols Domain 
 
Figure 7 presents the interpretation of ASPR in Nichols 
domain. It is a sufficient condition. 
 



 
 

     

 

 
Figure 7: Interpretation of ASPR condition in Nichols 

domain. 
 

3.6 ASPR in Root-Locus 
 
To check that a given transfer function is ASPR in Root-
Locus domain, is simple. The requirement is that there is at 
most one asymptote, and for proper systems this means 
exactly one asymptote.  
An example is shown in Figure 8. One can see that that for 
sufficiently large gain, n-1 poles converge to the zeros and 
one pole goes to minus infinity. Thus, the total angle of Z(jω) 
remains within +-90deg. 
 

 
Figure 8: Interpretation of ASPR condition in Root-Locus 

domain. 
 
 

4. PARAMETERIZATION OF PFC THAT RENDERS 
STABLE PLANTS ASPR 

 
Here we deal with the following issue: when can a plant be 
"converted" into an ASPR plant? For convenience, we only 
deal here with stable systems. The main result that is 
formalized and proved in this section is that any stable 
system can be augmented in such a way that it is made 
ASPR. 
We will parameterize a set of parallel feed-forward 
configurations (PFC) that convert any stable plant into an 
ASPR plant. This shows that any stable plant is “ASPRable.” 
 
4.1 Definitions 

 
We deal with transfer functions that are not necessarily 
proper rational functions. For the sake and convenience of the 
mathematical generality, we define as follows:  
1. A rational (not necessarily proper) function is stable if all 

its poles are in the open LHP.  
2. A rational function is minimum phase if all its zeros are 

in the open LHP (else it is non-minimum phase). 
3. Relative degree, r:  r = degree of the denominator – 

degree of the numerator. 
4.    Family of all stable, not necessarily proper, real-

rational functions.  
5.    Family of all stable, proper, real-rational functions. 
6.  The above families restricted to relative degree r.  
 
In this work we assume that the plant P(s) : 
(i) is stable; 
(ii) is strictly proper, i.e. the relative degree = r ≥ 1; 
(iii) has finite DC gain. ; 
 
We use ideas from the following theorem from [5]: 
Theorem 1: Assume that the system  (stable and 
proper). The set of all controllers, , for which the feedback 
system is internally stable equals 

 (6) 

Proof:  The full proof is presented in [5]. Here we present 
only a sketch. If both Q and P are stable, then 

 (7) 

 Q.E.D. 
Notice: 
i)  in theorem 1 is not necessarily stable or minimum phase! 
ii) in [5] one can find more general parameterizations of the 
set of all stabilizing controller for any proper plant. 
 
Theorem 2 [1, 8]:  
ASPR ⇔ minimum phase + relative degree∈{0,1}. 
 
Lemma 1:  
Assume that the system  (stable and proper). Assume 

that   and (stable), i.e.  stabilizes . 

Then,  is minimum phase. 
Proof: We have 

, (8) 

as  (stable) then  is minimum phase. Q.E.D. 
 
Theorem 3: Assume that the system  (stable+ proper). 
Let (i.e. stable+relative_degree=−1}).  



 
 

     

 

If then is minimum_phase + 

relative_degree=1 and thus ASPR. 
Proof: We have 

. (9)  

(stable+relative_degree r=−1) therefore,  is 
minimum phase and of relative degree r=1. Therefore, from 
theorem 2,  it is ASPR.     Q.E.D. 
 
Theorem 3a: Assume that the system  (stable+ 
proper).  Let  be minimum phase + relative_ degree=−1). 

If , then  is 
minimum phase + relative_degree=1 and thus ASPR. 
Proof: We have 

, if .   minimum phase 
and relative degree r=1. Therefore from theorem 2 it is 
ASPR..  Q.E.D. 
 
Remarks 
(i) What we called actually is  from 

theorem 1. 
(ii) The converse of theorem 3 is not correct. That is, 

theorem 3 does not parameterize all PFC's that are 
ASPRing stable plants. 

(iii) Theorem 3 states that any stable plant is ASPRable by 
parallel feed forward transfer function of relative degree 
1. (Note that we only restricted Theorem 3 to stable 
systems because of its simplicity and its direct 
applicability to many real world problems. However, in 
general, ASPR plants that are created by parallel feed 
forward do not require the original plant to be stable.)  

(iv) Although tempting, , Q is not subset 
of SPR transfer functions with relative degree one. 

(v) More general parameterization of PFC transfer function 
can be derived by procedures of coprime factorization 
[5]. 

 
5. Example: Design of PFC  

 
A great amount of examples can be found in the literature 
(see [2] and references therein). In this example we assume. 

 (10) 

Then 

 (11) 

 
We select a minimum phase transfer function with relative-
degree=-1  

 (12) 

Then from theorem 3 

 (13) 

We need to implement only in (8,9), and we have the 
augmented plant (9) 

 (14) 

 

 
Notice that except one pole at s=-0.5 the rest of the poles and 
zeros are close respectively. Consequently, the augmented 
plant  is stable for any positive gain. 
From figure 9, one can see that at low frequencies the relative 
effect of the PFC is sufficiently small such that 

and practically coincide. The result is an 
augmented plant which is minimum-phase, with 4 poles and 
three finite zeros, so it is ASPR and adaptive control can be 
applied.  

 
Figure 9: The Bode plot of the original plant, P(s), and the 

augmented plant, Pa(s). 

 
Figure 10: The Nyquist plot of the augmented plant – does 

not cross the negative real axis. 
 

Figures 10 and 11 present the Nyquist plot of the ASPRed 
plant . One can see from figure 11, a zoom up of figure 
10 around the origin, that the Nyquist plot arrives (leaves) at 
phase of -90deg (90deg), respectively. 



 
 

     

 

 
Figure 11: The Nyquist plot of the augmented plant zoomed 
near the origin – reaches the origin from ±90deg directions. 

 
Figure 12: The Nichols plot of the augmented plant – does 
not deviate beyond -180deg at low frequency and -90deg at 

high frequencies. 

 

Figure 13: The Root Locus of the augmented plant – has only 
one asymptote. 

 
Figure 12 presents the Nichols plot. One can see that all 
sufficient conditions are satisfied. 
Figure 13 presents the interpretation of ASPR in the Root-
Locus domain. 
 
 

6. CONCLUSIONS 
 
The interpretation and meaning of the Strictly Positive Real 
(SPR) and Almost Strictly Positive Real (ASPR) concepts in 
the Bode, Nyquist, Nichols and Root-Locus domains is 
presented. This helps the practicing control engineer more 
intuitive and better grasp of their implications.  
It is proved that any stable plant can be augmented to become 
ASPR. 
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